OPRFHS-NGSS Curriculum Alignment	Chemistry 577	Unit: Chapter 16

Big Idea(s)/ Unifying Q(s):	
Unifying Q(s):	
DCI-NGSS	•
SEP-NGSS	
CCC-NGSS	

16.1	16.1	16.2	16.2
Kinetic energy	• q=mc^t	Combustion reactions	Spontaneous reactions
Temperature	 Enthalpy 	Enthalpy of formation	 Non-spontaneous reactions
Celsius-Kelvin conversions	• Entropy	Enthalpy of reaction	Driving force
Calorimeter	 Gibbs Free Energy 	Forward Reactions	
Specific Heat	 Endothermic reactions 	Reverse Reactions	
Reaction Kinetics	 Exothermic reactions 	Hess's Law	

DCI, EOB and	Student Learning Targets (coded to DCI, EO or OPRF Objectives)
1.	I can define kinetic energy as well as potential chemical energy
	I can define temperature in terms of kinetic energy
	I can describe how a calorimeter works and how it is used to measure changes in energy that take place during a chemical reaction
	• I have memorized the q=mc^t equation and can use it to solve for any of the variables
	I have memorized the equation for Gibbs free energy and can use it to solve for any of the variables
	• I can use Hess's Law to calculate the heat of a chemical reaction by adding heats of formation, or by adding chemical reactions
	I can calculate the total entropy of a chemical reaction by adding and subtracting entropies of products and reactants
	I know how to use the concept of "products-reactants" with enthalpy as well as entropy
	I can convert temperature between degrees C and Kelvins
	I can use Gibbs free energy calculations to predict if reactions will be spontaneous or non-spontaneous
	I can look at a chemical equation and determine qualitatively if entropy is increasing or decreasing
	I can list factors that increase and decrease entropy
	I can convert kilojoules to joules
	• I can use coefficients in a balanced chemical equation to calculate the total enthalpy of a chemical reaction (Given a table of thermochemical values)
	I can predict if forward or reverse reactions will be favored based on enthalpy and entropy and Gibbs free energy
	I can calculate the enthalpy of formation using Hess's Law and enthalpies of formation and combustion tables

Unit:	Chapter	16
-------	---------	----

Classroom Instructional Activity Bank	Resource Bank
Labs/Lab Activities/Videos/Demonstrations	Worksheets/Reading Guides/Formative Assessments/On-line Homework
Demo day: Potassium Permanganate, making water, breaking water	Boezman AP Chemistry:
Cheetos-burning food/calorimetry	Boezman AP Chemistry:
Lab 9E: Hess's Law Lab	Boezman AP Chemistry:
	Watch methanol safety video
	 Bozeman AP Chem #59: Gibbs Free energy (7:00)
	Bozeman AP Chem #57: Entropy (7:00)
	 Bozeman AP Chem #58: Spontaneous processes (8:00)
	 2. Bozeman AP Chem #60: Driving non-spontanious processes
	(5:00)-Take notes in black notebook
	 Khan Academy: Gibbs free energy sample problem
	Science Geek: AP Chem Hess's Law
Investigations/Engineering Projects:	Summative Common Unit Assessment:
Biodiesel-Reducing your carbon footprint	Chapter 16 test
Cheetos-calorimetry	