Chemistry-575 Semester-1 Review Practice Test (General review with an emphasis on the types of questions missed most frequently by students.)
 Answer Section

MATCHING

1. ANS: B

PTS: 1
DIF: L1
REF: p. 808
OBJ: 25.1.1 Explain how an unstable nucleus releases energy.
2. ANS: A PTS: 1 DIF: L1 REF: p. 800

OBJ: 25.1.2 Describe the three main types of nuclear radiation.
3. ANS: C PTS: 1 DIF: L1 REF: p. 801

OBJ: 25.1.2 Describe the three main types of nuclear radiation.
4. ANS: A

PTS: 1
DIF: L1
REF: p. 799
OBJ: 25.1.1 Explain how an unstable nucleus releases energy.
5. ANS: B PTS: 1 DIF: L1 REF: p. 813

OBJ: 25.1.1 Explain how an unstable nucleus releases energy. | 25.3.3 Distinguish fission reactions from fusion reactions.

STA: 12.F.5.a

MULTIPLE CHOICE

6. ANS: D
PTS: 1
DIF: L1
REF: p. 40

OBJ: 2.1.2 Define physical property and list several common physical properties of substances.
STA: 12.C.5.b
7. ANS: D PTS: 1 DIF: L1 REF: p. 45

OBJ: 2.2.2 Distinguish between homogeneous and heterogeneous samples of matter.
8. ANS: B PTS: 1 DIF: L2 REF: p. 45

OBJ: 2.2.2 Distinguish between homogeneous and heterogeneous samples of matter. | 2.2.3 Describe two ways that components of mixtures can be separated.
9. ANS: D
PTS: 1
DIF: L1
REF: p. 53

OBJ: 2.4.1 Describe what happens during a chemical change.
10. ANS: A

Density is found by the following formula: $D=$ mass/volume

It does not matter how much of a substance you have, the density will always be constant. As the mass increases, so does the volume. The density always will be constant.
PTS: 1
DIF: L1
REF: p. 90 | p. 91

OBJ: 3.4.1 Calculate the density of a material from experimental data.
11. ANS: D

Density is found by the following formula: $D=$ mass/volume
It does not matter how much of a substance you have, the density will always be constant. As the mass increases, so does the volume. The density always will be constant.

PTS: 1 DIF: L1 REF: p. $90 \mid$ p. 91
OBJ: 3.4.1 Calculate the density of a material from experimental data.
12. ANS: C

Density is found by the following formula: $D=$ mass/volume
It does not matter how much of a substance you have, the density will always be constant. As the mass increases, so does the volume. The density always will be constant once you divide mass/volume.
Density is a physical property so all samples of the same substance have THE SAME DENSITY!
PTS: 1 DIF: L1 REF: p. $90 \mid$ p. 91
OBJ: 3.4.1 Calculate the density of a material from experimental data.
13. ANS: B

Percent Error $=\mid$ accepted value - experimental value $\mid \times 100$
accepted value
$\%$ Error $=\frac{74 \%-62 \%}{74 \%} \times 100=16 \%$ error
PTS: 1 DIF: L1 REF: p. 90|p. 91
OBJ: 3.4.1 Calculate the density of a material from experimental data.
14. ANS: C

NEVER PLAY WITH THE PROTONS! Electrons are outside of the nucleus and are the only subatomic particle that can be lost or gained in chemistry. (Unless you have a nuclear reactor)

If you change the protons, you change into a different element.
If you change the electrons, you form an ion with a positive or negative charge.
If you change the neutrons, you form a different isotope of the same element.
PTS: 1 DIF: L1 REF: p. 112|p. 113
OBJ: 4.3.1 Explain what makes elements and isotopes different from each other.
15. ANS: B

Cations are positve (pawsitive). When atoms lose negative electrons they become positive.
Anions (A-negative-ion) are negative. When atoms gain negative electrons they become negative.
PTS: 1 DIF: L1 REF: p. 112|p. 113
OBJ: 4.3.1 Explain what makes elements and isotopes different from each other.

ID: A

16. ANS: D

Cations are positve (pawsitive). When atoms lose negative electrons they become positive.
Anions (A-negative-ion) are negative. When atoms gain negative electrons they become negative.
PTS: 1 DIF: L1 REF: p. 112|p. 113
OBJ: 4.3.1 Explain what makes elements and isotopes different from each other.
17. ANS: C

Cations are positve (pawsitive). When atoms lose negative electrons they become positive.
Anions (A-negative-ion) are negative. When atoms gain negative electrons they become negative.
PTS: 1 DIF: L1 REF: p. 112|p. 113
OBJ: 4.3.1 Explain what makes elements and isotopes different from each other.
18. ANS: B PTS: 1 DIF: L2 REF: p. 111

OBJ: 4.3.1 Explain what makes elements and isotopes different from each other.
STA: 12.C.4.b
19. ANS: A PTS: 1 DIF: L2 REF: p. 111

OBJ: 4.3.1 Explain what makes elements and isotopes different from each other.
STA: 12.C.4.b
20. ANS: D

A Atomic \# = protons
P Protons = electrons when neutral
E Electrons

M Mass \# -
A Atomic \# =
N Neutrons
PTS: 1 DIF: L2 REF: p. 111
OBJ: 4.3.1 Explain what makes elements and isotopes different from each other.
STA: 12.C.4.b
21. ANS: C

Isotopes of the same element have to have the same atomic number and the same number of protons. Isotopes have different number of neutrons.

PTS: 1 DIF: L2 REF: p. 112
OBJ: 4.3.1 Explain what makes elements and isotopes different from each other.
22. ANS: C

Density is found by the following formula: Density=Mass/Volume
The equation can be manipulated so that Volume $=$ Mass/Density in order to solve for Volume .
PTS: 1
DIF: L1
REF: p. $90 \mid$ p. 91

OBJ: 3.4.1 Calculate the density of a material from experimental data.
23. ANS: C PTS: 1 DIF: Bloom's Level 2 | DOK Level 1

REF: Page 231 NAT: B. 6 STA: 12.C.4a

OBJ: 25.2.1 Describe the type of decay a radioisotope undergoes.
47. ANS: B

Independent variables: "I" choose. In this lab the student choose the size of the ice blocks.
PTS: 1 DIF: L3 REF: p. 803|p. 804
OBJ: 25.2.1 Describe the type of decay a radioisotope undergoes.
48. ANS: C

Dependent variables are almost always placed on the Y axis when graphing.
PTS: 1 DIF: L3 REF: p. 803|p. 804
OBJ: 25.2.1 Describe the type of decay a radioisotope undergoes.
49. ANS: C

Slope $=$ change in $\mathrm{Y} /$ change in X
Divide your answers out. Never leave a slope in fraction form.
PTS: 1 DIF: L3 REF: p. 803|p. 804
OBJ: 25.2.1 Describe the type of decay a radioisotope undergoes.
50. ANS: D

No explanation needed!
PTS: 1 DIF: L3 REF: p. $803 \mid$ p. 804
OBJ: 25.2.1 Describe the type of decay a radioisotope undergoes.

